3.18 \(\int \log (c (a+b x^3)^p) \, dx\)

Optimal. Leaf size=133 \[ -\frac{\sqrt [3]{a} p \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{\sqrt{3} \sqrt [3]{a} p \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt [3]{b}}-3 p x \]

[Out]

-3*p*x - (Sqrt[3]*a^(1/3)*p*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/b^(1/3) + (a^(1/3)*p*Log[a^(1/3
) + b^(1/3)*x])/b^(1/3) - (a^(1/3)*p*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(2*b^(1/3)) + x*Log[c*(a
+ b*x^3)^p]

________________________________________________________________________________________

Rubi [A]  time = 0.081811, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.667, Rules used = {2448, 321, 200, 31, 634, 617, 204, 628} \[ -\frac{\sqrt [3]{a} p \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{\sqrt{3} \sqrt [3]{a} p \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt [3]{b}}-3 p x \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(a + b*x^3)^p],x]

[Out]

-3*p*x - (Sqrt[3]*a^(1/3)*p*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/b^(1/3) + (a^(1/3)*p*Log[a^(1/3
) + b^(1/3)*x])/b^(1/3) - (a^(1/3)*p*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(2*b^(1/3)) + x*Log[c*(a
+ b*x^3)^p]

Rule 2448

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Dist[e*n*p, Int[
x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \log \left (c \left (a+b x^3\right )^p\right ) \, dx &=x \log \left (c \left (a+b x^3\right )^p\right )-(3 b p) \int \frac{x^3}{a+b x^3} \, dx\\ &=-3 p x+x \log \left (c \left (a+b x^3\right )^p\right )+(3 a p) \int \frac{1}{a+b x^3} \, dx\\ &=-3 p x+x \log \left (c \left (a+b x^3\right )^p\right )+\left (\sqrt [3]{a} p\right ) \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx+\left (\sqrt [3]{a} p\right ) \int \frac{2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx\\ &=-3 p x+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )+\frac{1}{2} \left (3 a^{2/3} p\right ) \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx-\frac{\left (\sqrt [3]{a} p\right ) \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 \sqrt [3]{b}}\\ &=-3 p x+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{\sqrt [3]{a} p \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )+\frac{\left (3 \sqrt [3]{a} p\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}\\ &=-3 p x-\frac{\sqrt{3} \sqrt [3]{a} p \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt [3]{b}}+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{\sqrt [3]{a} p \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )\\ \end{align*}

Mathematica [A]  time = 0.0365433, size = 129, normalized size = 0.97 \[ -\frac{\sqrt [3]{a} p \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}+x \log \left (c \left (a+b x^3\right )^p\right )+\frac{\sqrt [3]{a} p \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b}}-\frac{\sqrt{3} \sqrt [3]{a} p \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{\sqrt [3]{b}}-3 p x \]

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(a + b*x^3)^p],x]

[Out]

-3*p*x - (Sqrt[3]*a^(1/3)*p*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3) + (a^(1/3)*p*Log[a^(1/3) + b^
(1/3)*x])/b^(1/3) - (a^(1/3)*p*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(2*b^(1/3)) + x*Log[c*(a + b*x^
3)^p]

________________________________________________________________________________________

Maple [A]  time = 0.062, size = 113, normalized size = 0.9 \begin{align*} x\ln \left ( c \left ( b{x}^{3}+a \right ) ^{p} \right ) -3\,px+{\frac{ap}{b}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{ap}{2\,b}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{ap\sqrt{3}}{b}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(b*x^3+a)^p),x)

[Out]

x*ln(c*(b*x^3+a)^p)-3*p*x+1/b*p*a/(a/b)^(2/3)*ln(x+(a/b)^(1/3))-1/2/b*p*a/(a/b)^(2/3)*ln(x^2-(a/b)^(1/3)*x+(a/
b)^(2/3))+1/b*p*a/(a/b)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.08337, size = 288, normalized size = 2.17 \begin{align*} p x \log \left (b x^{3} + a\right ) + \sqrt{3} p \left (\frac{a}{b}\right )^{\frac{1}{3}} \arctan \left (\frac{2 \, \sqrt{3} b x \left (\frac{a}{b}\right )^{\frac{2}{3}} - \sqrt{3} a}{3 \, a}\right ) - \frac{1}{2} \, p \left (\frac{a}{b}\right )^{\frac{1}{3}} \log \left (x^{2} - x \left (\frac{a}{b}\right )^{\frac{1}{3}} + \left (\frac{a}{b}\right )^{\frac{2}{3}}\right ) + p \left (\frac{a}{b}\right )^{\frac{1}{3}} \log \left (x + \left (\frac{a}{b}\right )^{\frac{1}{3}}\right ) - 3 \, p x + x \log \left (c\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p),x, algorithm="fricas")

[Out]

p*x*log(b*x^3 + a) + sqrt(3)*p*(a/b)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x*(a/b)^(2/3) - sqrt(3)*a)/a) - 1/2*p*(a/b)
^(1/3)*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3)) + p*(a/b)^(1/3)*log(x + (a/b)^(1/3)) - 3*p*x + x*log(c)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(b*x**3+a)**p),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.19911, size = 193, normalized size = 1.45 \begin{align*} -\frac{1}{2} \, a b p{\left (\frac{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{a b} - \frac{2 \, \sqrt{3} \left (-a b^{2}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{a b^{2}} - \frac{\left (-a b^{2}\right )^{\frac{1}{3}} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{a b^{2}}\right )} + p x \log \left (b x^{3} + a\right ) -{\left (3 \, p - \log \left (c\right )\right )} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p),x, algorithm="giac")

[Out]

-1/2*a*b*p*(2*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a*b) - 2*sqrt(3)*(-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x
 + (-a/b)^(1/3))/(-a/b)^(1/3))/(a*b^2) - (-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b^2)) + p*
x*log(b*x^3 + a) - (3*p - log(c))*x